\(\int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx\) [151]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 105 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \arctan \left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a+a \sec (e+f x)}}\right )}{c \sqrt {c+d} f} \]

[Out]

2*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))*a^(1/2)/c/f-2*arctan(a^(1/2)*d^(1/2)*tan(f*x+e)/(c+d)^(1/2
)/(a+a*sec(f*x+e))^(1/2))*a^(1/2)*d^(1/2)/c/f/(c+d)^(1/2)

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4010, 3859, 209, 4052, 211} \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \arctan \left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a \sec (e+f x)+a}}\right )}{c f \sqrt {c+d}} \]

[In]

Int[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x]),x]

[Out]

(2*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(c*f) - (2*Sqrt[a]*Sqrt[d]*ArcTan[(Sqrt[a]
*Sqrt[d]*Tan[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sec[e + f*x]])])/(c*Sqrt[c + d]*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 4010

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[1/c,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[d/c, Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x
])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])

Rule 4052

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Dist[-2*(b/f), Subst[Int[1/(b*c + a*d + d*x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]
])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt {a+a \sec (e+f x)} \, dx}{c}-\frac {d \int \frac {\sec (e+f x) \sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx}{c} \\ & = -\frac {(2 a) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}+\frac {(2 a d) \text {Subst}\left (\int \frac {1}{a c+a d+d x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f} \\ & = \frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}-\frac {2 \sqrt {a} \sqrt {d} \arctan \left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a+a \sec (e+f x)}}\right )}{c \sqrt {c+d} f} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.89 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.37 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\frac {2 \left (\sqrt {c+d} \arctan \left (\frac {\tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )-\sqrt {d} \arctan \left (\frac {\sqrt {d} \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )\right ) \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}} \sqrt {a (1+\sec (e+f x))}}{c \sqrt {c+d} f} \]

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x]),x]

[Out]

(2*(Sqrt[c + d]*ArcTan[Tan[(e + f*x)/2]/Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])]] - Sqrt[d]*ArcTan[(Sqrt[d]*Tan[(
e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])])])*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])]*Sqrt[
a*(1 + Sec[e + f*x])])/(c*Sqrt[c + d]*f)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(498\) vs. \(2(85)=170\).

Time = 15.15 (sec) , antiderivative size = 499, normalized size of antiderivative = 4.75

method result size
default \(\frac {\sqrt {2}\, \left (2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \sqrt {\frac {d}{c -d}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )-d \ln \left (-\frac {2 \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -\sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d +\sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-c +d \right )}{-c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )+d \ln \left (\frac {2 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -2 \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d -2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-2 c +2 d}{c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )\right ) \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}}{2 f \sqrt {\frac {d}{c -d}}\, \sqrt {\left (c +d \right ) \left (c -d \right )}\, c}\) \(499\)

[In]

int((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

1/2/f*2^(1/2)/(d/(c-d))^(1/2)/((c+d)*(c-d))^(1/2)/c*(2*((c+d)*(c-d))^(1/2)*(d/(c-d))^(1/2)*arctanh(2^(1/2)/((1
-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)))-d*ln(-2*(((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2
)*2^(1/2)*(d/(c-d))^(1/2)*c-2^(1/2)*(d/(c-d))^(1/2)*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*d+((c+d)*(c-d))^(1
/2)*(-cot(f*x+e)+csc(f*x+e))-c+d)/(-c*(-cot(f*x+e)+csc(f*x+e))+(-cot(f*x+e)+csc(f*x+e))*d+((c+d)*(c-d))^(1/2))
)+d*ln(2*(((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*2^(1/2)*(d/(c-d))^(1/2)*c-2^(1/2)*(d/(c-d))^(1/2)*((1-cos(f*
x+e))^2*csc(f*x+e)^2-1)^(1/2)*d-((c+d)*(c-d))^(1/2)*(-cot(f*x+e)+csc(f*x+e))-c+d)/(c*(-cot(f*x+e)+csc(f*x+e))-
(-cot(f*x+e)+csc(f*x+e))*d+((c+d)*(c-d))^(1/2))))*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*(-2*a/((1-cos(f*x+e)
)^2*csc(f*x+e)^2-1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.50 (sec) , antiderivative size = 669, normalized size of antiderivative = 6.37 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\left [\frac {\sqrt {-\frac {a d}{c + d}} \log \left (\frac {2 \, {\left (c + d\right )} \sqrt {-\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right ) + \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \sqrt {-\frac {a d}{c + d}} \log \left (\frac {2 \, {\left (c + d\right )} \sqrt {-\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right )}{c f}, \frac {2 \, \sqrt {\frac {a d}{c + d}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a d \sin \left (f x + e\right )}\right ) + \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, {\left (\sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \sqrt {\frac {a d}{c + d}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a d}{c + d}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a d \sin \left (f x + e\right )}\right )\right )}}{c f}\right ] \]

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="fricas")

[Out]

[(sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*si
n(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*
x + e) + d)) + sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x +
 e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(c*f), -(2*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a
)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d))*sq
rt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c +
a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/(c*f), (2*sqrt(a*d/(c + d))*arctan((c + d)*
sqrt(a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*d*sin(f*x + e))) + sqrt(-a)*log((2*a
*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e
) - a)/(cos(f*x + e) + 1)))/(c*f), -2*(sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sq
rt(a)*sin(f*x + e))) - sqrt(a*d/(c + d))*arctan((c + d)*sqrt(a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x +
e))*cos(f*x + e)/(a*d*sin(f*x + e))))/(c*f)]

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\int \frac {\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}{c + d \sec {\left (e + f x \right )}}\, dx \]

[In]

integrate((a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e)),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))/(c + d*sec(e + f*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\int { \frac {\sqrt {a \sec \left (f x + e\right ) + a}}{d \sec \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sec(f*x + e) + a)/(d*sec(f*x + e) + c), x)

Giac [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\int { \frac {\sqrt {a \sec \left (f x + e\right ) + a}}{d \sec \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e)),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{c+d \sec (e+f x)} \, dx=\int \frac {\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}}{c+\frac {d}{\cos \left (e+f\,x\right )}} \,d x \]

[In]

int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x)),x)

[Out]

int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x)), x)